Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
2.
Rinsho Ketsueki ; 64(6): 482-488, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37407471

RESUMO

Large-scale in vitro red blood cell (RBC) production has been attempted in recent years. Potential cell sources for RBC production include hematopoietic stem/progenitor cells, pluripotent stem cells, and immortalized erythroid progenitor cell lines, which can induce enucleated RBCs with characteristics such as oxygen-carrying capacity and deformability. A phase I clinical study of cultured RBCs produced from hematopoietic stem/progenitor cells has revealed a similar in vivo half-life between cultured and native RBCs. Thus, the application of cultured RBCs in blood transfusion is gradually advancing. However, a single transfusion requires a large number of cells, unlike other cell therapies. Therefore, developing a method to mass-produce RBCs from a small culture volume at a low cost is important in the future. This review summarizes the current status and prospects concerning in vitro RBC production using each cell source, which can improve future transfusion medicine.


Assuntos
Medicina Transfusional , Humanos , Eritrócitos , Células Precursoras Eritroides/metabolismo , Eritropoese , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular
3.
Protein Expr Purif ; 210: 106313, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37276914

RESUMO

Many therapeutic proteins are expressed in Escherichia coli bacteria for the low cost and high yield obtained. However, these gram-negative bacteria also generate undesirable endotoxin byproducts such as lipopolysaccharides (LPS). These endotoxins can induce a human immune response and cause severe inflammation. To mitigate this problem, we have employed the ClearColi BL21 (DE3) endotoxin-free cells as an expression host for Cas9 protein production. Cas9 is an endonuclease enzyme that plays a key role in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated protein 9 (CRISPR/Cas9) genome editing technique. This technology is very promising for use in diagnostics as well as treatment of diseases, especially for genetic diseases such as thalassemia. The potential uses for this technology thus generate a considerable interest for Cas9 utilization as a therapeutic protein in clinical treatment. Therefore, special care in protein production should be a major concern. Accordingly, we expressed the Cas9 protein in endotoxin-free bacterial cells achieving 99% purity with activity comparable to commercially available Cas9. Our protocol therefore yields a cost-effective product suitable for invitro experiments with stem cells.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Humanos , Endotoxinas/genética , Edição de Genes/métodos , Proteínas Repressoras
4.
Transfusion ; 63(6): 1122-1128, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37154531

RESUMO

BACKGROUND: The generation of immortalized erythroid progenitor cell lines capable of producing enough red blood cells (RBCs) for blood transfusion typically requires the overexpression of oncogenes in stem cells or progenitor cells to permanently proliferate immature cells. It is essential that any live oncogene-expressing cells are eliminated from the final RBC products for clinical use. STUDY DESIGN AND METHODS: It is believed that safety issues may be resolved by using a leukoreduction filter or by irradiating the final products, as is conventionally done in blood banks; however, this has never been proven to be effective. Therefore, to investigate whether immortalized erythroblasts can be completely removed using γ-ray irradiation, we irradiated the erythroblast cell line, HiDEP, and the erythroleukemic cell line, K562 that overexpress HPV16 E6/E7. We then analyzed the extent of cell death using flow cytometry and polymerase chain reaction (PCR). The cells were also subjected to leukoreduction filters. RESULTS: Using γ-ray irradiation at 25 Gy, 90.4% of HiDEP cells, 91.6% of K562-HPV16 E6/E7 cells, and 93.5% of non-transduced K562 cells were dead. In addition, 5.58 × 107 HiDEP cells were passed through a leukoreduction filter, and 38 intact cells were harvested, revealing a filter removal efficiency of 99.9999%. However, both intact cells and oncogene DNA were still detected. DISCUSSION: Irradiation cannot induce total cell death of oncogene-expressing erythroblasts and leukocyte filter efficiency is not 100%. Therefore, our findings imply that for clinical applications, safer methods should be developed to completely remove residual nucleated cells from cell line-derived RBC products.


Assuntos
Eritrócitos , Células Eritroides , Humanos , Eritrócitos/metabolismo , Células Precursoras Eritroides , Células K562 , Citometria de Fluxo
5.
Mol Ther Nucleic Acids ; 32: 671-688, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37215154

RESUMO

Reactivation of fetal hemoglobin (HbF) is a commonly adapted strategy to ameliorate ß-hemoglobinopathies. However, the continued production of defective adult hemoglobin (HbA) limits HbF tetramer production affecting the therapeutic benefits. Here, we evaluated deletional hereditary persistence of fetal hemoglobin (HPFH) mutations and identified an 11-kb sequence, encompassing putative repressor region (PRR) to ß-globin exon-1 (ßE1), as the core deletion that ablates HbA and exhibits superior HbF production compared with HPFH or other well-established targets. PRR-ßE1-edited hematopoietic stem and progenitor cells (HSPCs) retained their genome integrity and their engraftment potential to repopulate for long-term hematopoiesis in immunocompromised mice producing HbF positive cells in vivo. Furthermore, PRR-ßE1 gene editing is feasible without ex vivo HSPC culture. Importantly, the editing induced therapeutically significant levels of HbF to reverse the phenotypes of both sickle cell disease and ß-thalassemia major. These findings imply that PRR-ßE1 gene editing of patient HSPCs could lead to improved therapeutic outcomes for ß-hemoglobinopathy gene therapy.

6.
Vox Sang ; 118(5): 392-397, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36908196

RESUMO

BACKGROUND AND OBJECTIVES: The RHAG blood group system contains five antigens: Duclos (RHAG001), Ola (RHAG002), DSLK (RHAG003), Kg (RHAG005) and SHER (RHAG006). Individuals who are DSLK-negative and Kg-positive have the same allele RHAG*01.-3, with a single-nucleotide variation (rs144305805), c.490A>C (p.Lys164Gln), in exon 3 of the RHAG gene. We aimed to confirm whether DSLK and Kg are antithetical antigens. MATERIALS AND METHODS: Blood samples of the original DSLK-negative proband with anti-DSLK, her son and another DSLK-negative individual were examined. The RHAG gene was analysed by polymerase chain reaction and Sanger sequencing. Immunocomplex capture fluorescence assays (ICFAs) and monocyte phagocytosis assays were performed to characterize the anti-DSLK antibody. Cross-testing of alloanti-DSLK and monoclonal anti-Kg (OSK46) was performed using transduced HEK293 cells by inducing the construct of expression vectors encoding wild-type RHAG*01 or the variant RHAG*01.-3. RESULTS: ICFA using monoclonal anti-RHAG (LA18.18) revealed that the anti-DSLK and anti-Kg antibodies reacted with the wild-type and variant RhAG (Rh-associated glycoprotein), respectively. The proband and a DSLK-negative individual appeared to be homozygous for variant RHAG*01.-3, and the proband's son was typed as RHAG*01/RHAG*01.-3 heterozygote. HEK293 cells with wild-type RhAG reacted with the anti-DSLK but not anti-Kg antibody, whereas HEK293 cells expressing the variant RhAG reacted with the anti-Kg but not anti-DSLK antibody. Monocyte phagocytosis assays indicated that 64% of red cells sensitized with anti-DSLK were phagocytosed by monocytes. CONCLUSION: Our results demonstrate that DSLK and Kg are antithetical antigens in the RHAG blood group system. Anti-DSLK may be a clinically significant antibody.


Assuntos
Antígenos de Grupos Sanguíneos , Sistema do Grupo Sanguíneo Rh-Hr , Humanos , Feminino , Sistema do Grupo Sanguíneo Rh-Hr/genética , Células HEK293 , Glicoproteínas de Membrana/genética , Antígenos de Grupos Sanguíneos/genética , Eritrócitos/metabolismo , Proteínas Sanguíneas
7.
Front Genome Ed ; 5: 1141618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969374

RESUMO

Introduction: Genome editing tools, such as CRISPR/Cas, TALE nucleases and, more recently, double-strand-break-independent editors, have been successfully used for gene therapy and reverse genetics. Among various challenges in the field, tolerable and efficient delivery of editors to target cells and sites, as well as independence from commercially available tools for flexibility and fast adoption of new editing technology are the most pressing. For many hematopoietic research applications, primary CD34+ cells and the human umbilical cord-derived progenitor erythroid 2 (HUDEP-2) cell line are highly informative substrates and readily accessible for in vitro manipulation. Moreover, ex vivo editing of CD34+ cells has immediate therapeutic relevance. Both cell types are sensitive to standard transfection procedures and reagents, such as lipofection with plasmid DNA, calling for more suitable methodology in order to achieve high efficiency and tolerability of editing with editors of choice. These challenges can be addressed by RNA delivery, either as a mixture of guide RNA and mRNA for CRISRP/Cas-based systems or as a mixture of mRNAs for TALENs. Compared to ribonucleoproteins or proteins, RNA as vector creates flexibility by removing dependence on commercial availability or laborious in-house preparations of novel editor proteins. Compared to DNA, RNA is less toxic and by obviating nuclear transcription and export of mRNA offers faster kinetics and higher editing efficiencies. Methods: Here, we detail an in vitro transcription protocol based on plasmid DNA templates with the addition of Anti-Reverse Cap Analog (ARCA) using T7 RNA polymerase, and poly (A) tailing using poly (A) polymerase, combined with nucleofection of HUDEP-2 and patient-derived CD34+ cells. Our protocol for RNA-based delivery employs widely available reagents and equipment and can easily be adopted for universal in vitro delivery of genome editing tools. Results and Discussion: Drawing on a common use case, we employ the protocol to target a ß-globin mutation and to reactivate γ-globin expression as two potential therapies for ß-hemoglobinopathies, followed by erythroid differentiation and functional analyses. Our protocol allows high editing efficiencies and unimpaired cell viability and differentiation, with scalability, suitability for functional assessment of editing outcomes and high flexibility in the application to different editors.

8.
Front Genet ; 13: 1045236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36579335

RESUMO

Introduction: Diamond Blackfan anemia (DBA) is a rare congenital disease characterized by defective maturation of the erythroid progenitors in the bone marrow, for which treatment involves steroids, chronic transfusions, or hematopoietic stem cells transplantation. Diamond Blackfan anemia is caused by defective ribosome biogenesis due to heterozygous pathogenic variants in one of 19 ribosomal protein (RP) genes. The decreased number of functional ribosomes leads to the activation of pro-apoptotic pathways and to the reduced translation of key genes for erythropoiesis. Results and discussion: Here we characterized the phenotype of RPS26-deficiency in a cell line derived from human umbilical cord blood erythroid progenitors (HUDEP-1 cells). This model recapitulates cellular hallmarks of Diamond Blackfan anemia including: imbalanced production of ribosomal RNAs, upregulation of pro-apoptotic genes and reduced viability, and shows increased levels of intracellular calcium. Evaluation of the expression of erythroid markers revealed the impairment of erythroid differentiation in RPS26-silenced cells compared to control cells. Conclusions: In conclusion, for the first time we assessed the effect of RPS26 deficiency in a human erythroid progenitor cell line and demonstrated that these cells can be used as a scalable model system to study aspects of DBA pathophysiology that have been refractory to detailed investigation because of the paucity of specific cell types affected in this disorder.

9.
Dis Markers ; 2022: 1226697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36065334

RESUMO

Erythropoiesis is a highly complex and sophisticated multistage process regulated by many transcription factors, as well as noncoding RNAs. Anthrax toxin receptor 1 (ANTXR1) is a type I transmembrane protein that binds the anthrax toxin ligands and mediates the entry of its toxic part into cells. It also functions as a receptor for the Protective antigen (PA) of anthrax toxin, and mediates the entry of Edema factor (EF) and Lethal factor (LF) into the cytoplasm of target cells and exerts their toxicity. Previous research has shown that ANTXR1 inhibits the expression of γ-globin during the differentiation of erythroid cells. However, the effect on erythropoiesis from a cellular perspective has not been fully determined. This study examined the role of ANTXR1 on erythropoiesis using K562 and HUDEP-2 cell lines as well as cord blood CD34+ cells. Our study has shown that overexpression of ANTXR1 can positively regulate erythrocyte proliferation, as well as inhibit GATA1 and ALAS2 expression, differentiation, and apoptosis in K562 cells and hematopoietic stem cells. ANTXR1 knockdown inhibited proliferation, promoted GATA1 and ALAS2 expression, accelerated erythrocyte differentiation and apoptosis, and promoted erythrocyte maturation. Our study also showed that ANTXR1 may regulate the proliferation and differentiation of hematopoietic cells, though the Wnt/ß-catenin pathway, which may help to establish a possible therapeutic target for the treatment of blood disorders.


Assuntos
Células Eritroides , Células-Tronco Hematopoéticas , Proteínas dos Microfilamentos , Receptores de Superfície Celular , Via de Sinalização Wnt , 5-Aminolevulinato Sintetase/metabolismo , Moléculas de Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Eritroides/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Receptores de Superfície Celular/metabolismo
10.
J Immunol Res ; 2022: 8440422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35942209

RESUMO

Reactivation of fetal hemoglobin (HbF, α2γ2) alleviates clinical symptoms in patients with ß-thalassemia and sickle cell disease, although the regulatory mechanisms of γ-globin expression have not yet been fully elucidated. Recent studies found that interfering with the expression of the membrane protein ANTXR1 gene upregulated γ-globin levels. However, the exact mechanism by which ANTXR1 regulates γ-globin levels remains unclear. Our study showed that overexpression and knockdown of ANTXR1 in K562, cord blood CD34+, and HUDEP-2 cells decreased and increased γ-globin expression, respectively. ANTXR1 regulates the reactivation of fetal hemoglobin (HbF, α2γ2) in K562, cord blood CD34+, and adult peripheral blood CD34+ cells through interaction with LRP6 to promote the nuclear entry of ß-catenin and activate the Wnt/ß-catenin signaling pathway. The overexpression or knockdown of ANTXR1 on γ-globin and Wnt/ß-catenin signaling in K562 cells was reversed by the inhibitor XAV939 and the activator LiCl, respectively, where XAV939 inhibits the transcription of ß-catenin in the Wnt pathway, but LiCl inhibits GSK3-ß. We also showed that the binding ability of the rank4 site in the transcriptional regulatory region of the SOX6 gene to c-Jun was significantly increased after overexpression of ANTXR1 in K562 cells. SOX6 protein expression was increased significantly after overexpression of the c-Jun gene, indicating that the transcription factor c-Jun initiated the transcription of SOX6, thereby silencing γ-globin. Our findings may provide a new intervention target for the treatment of ß-hemoglobinopathies.


Assuntos
Hemoglobina Fetal , gama-Globinas , Adulto , Antígenos CD34 , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/metabolismo , Receptores de Superfície Celular , Via de Sinalização Wnt , beta Catenina/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo
11.
Cell Discov ; 8(1): 41, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35534476

RESUMO

Ribosomal protein dysfunction causes diverse human diseases, including Diamond-Blackfan anemia (DBA). Despite the universal need for ribosomes in all cell types, the mechanisms underlying ribosomopathies, which are characterized by tissue-specific defects, are still poorly understood. In the present study, we analyzed the transcriptomes of single purified erythroid progenitors isolated from the bone marrow of DBA patients. These patients were categorized into untreated, glucocorticoid (GC)-responsive and GC-non-responsive groups. We found that erythroid progenitors from untreated DBA patients entered S-phase of the cell cycle under considerable duress, resulting in replication stress and the activation of P53 signaling. In contrast, cell cycle progression was inhibited through induction of the type 1 interferon pathway in treated, GC-responsive patients, but not in GC-non-responsive patients. Notably, a low dose of interferon alpha treatment stimulated the production of erythrocytes derived from DBA patients. By linking the innately shorter cell cycle of erythroid progenitors to DBA pathogenesis, we demonstrated that interferon-mediated cell cycle control underlies the clinical efficacy of glucocorticoids. Our study suggests that interferon administration may constitute a new alternative therapeutic strategy for the treatment of DBA. The trial was registered at www.chictr.org.cn as ChiCTR2000038510.

12.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163006

RESUMO

Molecular therapies and functional studies greatly benefit from spatial and temporal precision of genetic intervention. We therefore conceived and explored tag-activated microRNA (miRNA)-mediated endogene deactivation (TAMED) as a research tool and potential lineage-specific therapy. For proof of principle, we aimed to deactivate γ-globin repressor BCL11A in erythroid cells by tagging the 3' untranslated region (UTR) of BCL11A with miRNA recognition sites (MRSs) for the abundant erythromiR miR-451a. To this end, we employed nucleofection of CRISPR/Cas9 ribonucleoprotein (RNP) particles alongside double- or single-stranded oligodeoxynucleotides for, respectively, non-homologous-end-joining (NHEJ)- or homology-directed-repair (HDR)-mediated MRS insertion. NHEJ-based tagging was imprecise and inefficient (≤6%) and uniformly produced knock-in- and indel-containing MRS tags, whereas HDR-based tagging was more efficient (≤18%), but toxic for longer donors encoding concatenated and thus potentially more efficient MRS tags. Isolation of clones for robust HEK293T cells tagged with a homozygous quadruple MRS resulted in 25% spontaneous reduction in BCL11A and up to 36% reduction after transfection with an miR-451a mimic. Isolation of clones for human umbilical cord blood-derived erythroid progenitor-2 (HUDEP-2) cells tagged with single or double MRS allowed detection of albeit weak γ-globin induction. Our study demonstrates suitability of TAMED for physiologically relevant modulation of gene expression and its unsuitability for therapeutic application in its current form.


Assuntos
Células Eritroides/citologia , Edição de Genes/métodos , MicroRNAs/genética , Proteínas Repressoras/genética , Regiões 3' não Traduzidas , Sistemas CRISPR-Cas , Linhagem Celular , Reparo do DNA por Junção de Extremidades , Células Eritroides/metabolismo , Células HEK293 , Humanos , Estudo de Prova de Conceito
13.
Elife ; 112022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147495

RESUMO

Naturally occurring point mutations in the HBG promoter switch hemoglobin synthesis from defective adult beta-globin to fetal gamma-globin in sickle cell patients with hereditary persistence of fetal hemoglobin (HPFH) and ameliorate the clinical severity. Inspired by this natural phenomenon, we tiled the highly homologous HBG proximal promoters using adenine and cytosine base editors that avoid the generation of large deletions and identified novel regulatory regions including a cluster at the -123 region. Base editing at -123 and -124 bp of HBG promoter induced fetal hemoglobin (HbF) to a higher level than disruption of well-known BCL11A binding site in erythroblasts derived from human CD34+ hematopoietic stem and progenitor cells (HSPC). We further demonstrated in vitro that the introduction of -123T > C and -124T > C HPFH-like mutations drives gamma-globin expression by creating a de novo binding site for KLF1. Overall, our findings shed light on so far unknown regulatory elements within the HBG promoter and identified additional targets for therapeutic upregulation of fetal hemoglobin.


Assuntos
Anemia Falciforme/genética , Sistemas CRISPR-Cas , Hemoglobina Fetal/genética , Edição de Genes/métodos , Adenina/metabolismo , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citosina/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Mutação Puntual , Regiões Promotoras Genéticas , Globinas beta/genética , Talassemia beta/genética , gama-Globinas/genética
14.
Eur J Pharmacol ; 918: 174788, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35093321

RESUMO

Beta-hemoglobinopathies are caused by mutations in the ß-globin gene. One strategy to cure this disease relies on re-activating the γ-globin expression. BCL11A is an important transcription factor that suppresses the γ-globin expression, which makes it one of the most promising therapeutic targets in ß-hemoglobinopathies. Here, we performed single-gene editing and multiplex gene editing via CRISPR/Cas9 technology to edit BCL11A erythroid-specific enhancer and BCL11A binding site on γ-globin gene promoter in HUDEP-2 cells and adult human CD34+ cells. Multiplex gene editing led to higher γ-globin expression than single-gene editing without inhibiting erythroid differentiation. By further optimizing the on-target DNA editing efficiency of multiplex gene editing, the percentage of F-cells exceeded 50% in HUDEP-2 cells. Amplicon deep sequencing and whole genome sequencing were used to detect the editing frequency of on- and potential off-target sites in CD34+ cells. No off-target mutations were detected, suggesting its accuracy in HSPCs. In summary, our study provides a new approach which can be used for the treatment of ß-hemoglobinopathies in the future.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Proteínas Repressoras/metabolismo , Globinas beta/genética , Talassemia beta , gama-Globinas , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Sequenciamento Completo do Genoma/métodos , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/terapia , gama-Globinas/genética , gama-Globinas/metabolismo
15.
Blood ; 139(21): 3181-3193, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35040907

RESUMO

Anemia of inflammation, also known as anemia of chronic disease, is refractory to erythropoietin (EPO) treatment, but the mechanisms underlying the EPO refractory state are unclear. Here, we demonstrate that high mobility group box-1 protein (HMGB1), a damage-associated molecular pattern molecule recently implicated in anemia development during sepsis, leads to reduced expansion and increased death of EPO-sensitive erythroid precursors in human models of erythropoiesis. HMGB1 significantly attenuates EPO-mediated phosphorylation of the Janus kinase 2/STAT5 and mTOR signaling pathways. Genetic ablation of receptor for advanced glycation end products, the only known HMGB1 receptor expressed by erythroid precursors, does not rescue the deleterious effects of HMGB1 on EPO signaling, either in human or murine precursors. Furthermore, surface plasmon resonance studies highlight the ability of HMGB1 to interfere with the binding between EPO and the EPOR. Administration of a monoclonal anti-HMGB1 antibody after sepsis onset in mice partially restores EPO signaling in vivo. Thus, HMGB1-mediated restriction of EPO signaling contributes to the chronic phase of anemia of inflammation.


Assuntos
Anemia , Eritropoetina , Proteína HMGB1 , Sepse , Anemia/genética , Animais , Eritropoese/genética , Eritropoetina/metabolismo , Inflamação , Camundongos , Receptores da Eritropoetina/metabolismo , Sepse/complicações
16.
Front Genome Ed ; 4: 1085111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605051

RESUMO

Sickle cell anaemia (SCA) is one of the common autosomal recessive monogenic disorders, caused by a transverse point mutation (GAG > GTG) at the sixth codon of the beta-globin gene, which results in haemolytic anaemia due to the fragile RBCs. Recent progress in genome editing has gained attention for the therapeutic cure for SCA. Direct correction of SCA mutation by homology-directed repair relies on a double-strand break (DSB) at the target site and carries the risk of generating beta-thalassaemic mutations if the editing is not error-free. On the other hand, base editors cannot correct the pathogenic SCA mutation resulting from A > T base transversion. Prime editor (PE), the recently described CRISPR/Cas 9 based gene editing tool that enables precise gene manipulations without DSB and unintended nucleotide changes, is a viable approach for the treatment of SCA. However, the major limitation with the use of prime editing is the lower efficiency especially in human erythroid cell lines and primary cells. To overcome these limitations, we developed a modular lenti-viral based prime editor system and demonstrated its use for the precise modelling of SCA mutation and its subsequent correction in human erythroid cell lines. We achieved highly efficient installation of SCA mutation (up to 72%) and its subsequent correction in human erythroid cells. For the first time, we demonstrated the functional restoration of adult haemoglobin without any unintended nucleotide changes or indel formations using the PE2 system. We also validated that the off-target effects mediated by the PE2 system is very minimal even with very efficient on-target conversion, making it a safe therapeutic option. Taken together, the modular lenti-viral prime editor system developed in this study not only expands the range of cell lines targetable by prime editor but also improves the efficiency considerably, enabling the use of prime editor for myriad molecular, genetic, and translational studies.

17.
Hum Cell ; 35(1): 408-417, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34817797

RESUMO

Ex vivo manufactured red blood cells (RBC) generated from immortalized erythroid cell lines which can continuously grow are expected to become a significant alternative in future transfusion therapies. The ectopic expression of human papilloma virus (HPV) E6/E7 gene has successfully been employed to establish these cell lines. To induce differentiation and maturation of the immortalized cell lines, terminating the HPV-E6/E7 expression through a gene induction system has been believed to be essential. Here, we report that erythroid cell lines established from human bone marrow using simple expression of HPV-E6/E7 are capable of normal erythroid differentiation, without turning gene expression off. Through simply changing cell culture conditions, a newly established cell line, Erythroid Line from Lund University (ELLU), is able to differentiate toward mature cells, including enucleated reticulocytes. ELLU is heterogeneous and, unexpectedly, clones expressing adult hemoglobin rapidly differentiate and produce fragile cells. Upon differentiation, other ELLU clones shift from fetal to adult hemoglobin expression, giving rise to more mature cells. Our findings propose that it is not necessary to employ gene induction systems to establish immortalized erythroid cell lines sustaining differentiation potential and describe novel cellular characteristics for desired functionally competent clones.


Assuntos
Diferenciação Celular , Células Eritroides , Expressão Gênica , Alphapapillomavirus/genética , Células da Medula Óssea , Linhagem Celular , Células Clonais , Genes Virais , Vetores Genéticos , Hemoglobinas , Humanos , Reticulócitos
18.
Sci Adv ; 7(48): eabj5293, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34818036

RESUMO

Congenital dyserythropoietic anemia type II (CDAII) results from loss-of-function mutations in SEC23B. In contrast to humans, SEC23B-deficient mice deletion do not exhibit CDAII but die perinatally with pancreatic degeneration. Here, we demonstrate that expression of the full SEC23A protein (the SEC23B paralog) from the endogenous regulatory elements of Sec23b completely rescues the SEC23B-deficient mouse phenotype. Consistent with these data, while mice with erythroid-specific deletion of either Sec23a or Sec23b do not exhibit CDAII, we now show that mice with erythroid-specific deletion of all four Sec23 alleles die in mid-embryogenesis with features of CDAII and that mice with deletion of three Sec23 alleles exhibit a milder erythroid defect. To test whether the functional overlap between the SEC23 paralogs is conserved in human erythroid cells, we generated SEC23B-deficient HUDEP-2 cells. Upon differentiation, these cells exhibited features of CDAII, which were rescued by increased expression of SEC23A, suggesting a novel therapeutic strategy for CDAII.

19.
Mol Ther Methods Clin Dev ; 22: 26-39, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485592

RESUMO

Developing robust methodology for the sustainable production of red blood cells in vitro is essential for providing an alternative source of clinical-quality blood, particularly for individuals with rare blood group phenotypes. Immortalized erythroid progenitor cell lines are the most promising emergent technology for achieving this goal. We previously created the erythroid cell line BEL-A from bone marrow CD34+ cells that had improved differentiation and enucleation potential compared to other lines reported. In this study we show that our immortalization approach is reproducible for erythroid cells differentiated from bone marrow and also from far more accessible peripheral and cord blood CD34+ cells, consistently generating lines with similar improved erythroid performance. Extensive characterization of the lines shows them to accurately recapitulate their primary cell equivalents and provides a molecular signature for immortalization. In addition, we show that only cells at a specific stage of erythropoiesis, predominantly proerythroblasts, are amenable to immortalization. Our methodology provides a step forward in the drive for a sustainable supply of red cells for clinical use and for the generation of model cellular systems for the study of erythropoiesis in health and disease, with the added benefit of an indefinite expansion window for manipulation of molecular targets.

20.
Elife ; 102021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34585664

RESUMO

Mutations in the adult ß-globin gene can lead to a variety of hemoglobinopathies, including sickle cell disease and ß-thalassemia. An increase in fetal hemoglobin expression throughout adulthood, a condition named hereditary persistence of fetal hemoglobin (HPFH), has been found to ameliorate hemoglobinopathies. Deletional HPFH occurs through the excision of a significant portion of the 3' end of the ß-globin locus, including a CTCF binding site termed 3'HS1. Here, we show that the deletion of this CTCF site alone induces fetal hemoglobin expression in both adult CD34+ hematopoietic stem and progenitor cells and HUDEP-2 erythroid progenitor cells. This induction is driven by the ectopic access of a previously postulated distal enhancer located in the OR52A1 gene downstream of the locus, which can also be insulated by the inversion of the 3'HS1 CTCF site. This suggests that genetic editing of this binding site can have therapeutic implications to treat hemoglobinopathies.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Hemoglobina Fetal/genética , Regulação da Expressão Gênica , Hemoglobinopatias/genética , Globinas beta/genética , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinopatias/metabolismo , Humanos , Mutação , Ligação Proteica , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Globinas beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...